منابع مشابه
Import of bacterial pathogenicity factors into mitochondria.
Recent research on the mechanism underlying the interaction of bacterial pathogens with their host has shifted the focus to secreted microbial proteins affecting the physiology and innate immune response of the target cell. These proteins either traverse the plasma membrane via specific entry pathways involving host cell receptors or are directly injected via bacterial secretion systems into th...
متن کاملImport and metabolism of glutathione by Streptococcus mutans.
Glutathione (gamma-GluCysGly, GSH) is not found in most gram-positive bacteria, but some appear to synthesize it and others, including Streptococcus mutans ATCC 33402, import it from their growth medium. Import of oxidized glutathione (GSSG) by S. mutans 33402 in 7H9 medium was shown to require glucose and to occur with an apparent Km of 18+/-5 microM. GSSG, GSH, S-methylglutathione, and homocy...
متن کاملExploitation of an iron transporter for bacterial protein antibiotic import
Unlike their descendants, mitochondria and plastids, bacteria do not have dedicated protein import systems. However, paradoxically, import of protein bacteriocins, the mechanisms of which are poorly understood, underpins competition among pathogenic and commensal bacteria alike. Here, using X-ray crystallography, isothermal titration calorimetry, confocal fluorescence microscopy, and in vivo ph...
متن کاملIntegrative Toxicoproteomics Implicates Impaired Mitochondrial Glutathione Import as an Off-Target Effect of Troglitazone
Troglitazone, a first-generation thiazolidinedione of antihyperglycaemic properties, was withdrawn from the market due to unacceptable idiosyncratic hepatotoxicity. Despite intensive research, the underlying mechanism of troglitazone-induced liver toxicity remains unknown. Here we report the use of the Sod2(+/-) mouse model of silent mitochondrial oxidative-stress-based and quantitative mass sp...
متن کاملExpression of bacterial GshF in Pichia pastoris for glutathione production.
Conventionally, two consecutive enzymatic reactions catalyzed by γ-glutamylcysteine synthetase and glutathione synthetase are most commonly used for glutathione production. Here we demonstrate that bacterial bifunctional GshF can be used for glutathione production in a eukaryotic system without accumulation of the intermediate γ-glutamylcysteine.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Structural & Molecular Biology
سال: 2013
ISSN: 1545-9993,1545-9985
DOI: 10.1038/nsmb.2632